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Abstract. Considering the inevitable obstacles faced by the pixel-based clustering methods,
such as salt-and-pepper noise, high computational complexity, and the lack of spatial informa-
tion, a reweighted mass center based object-oriented sparse subspace clustering (RMC-OOSSC)
algorithm for hyperspectral images (HSIs) is proposed. First, the mean-shift segmentation
method is utilized to oversegment the HSI to obtain meaningful objects. Second, a distance
reweighted mass center learning model is presented to extract the representative and discrimi-
native features for each object. Third, assuming that all the objects are sampled from a union of
subspaces, it is natural to apply the SSC algorithm to the HSI. Faced with the high correlation
among the hyperspectral objects, a weighting scheme is adopted to ensure that the highly corre-
lated objects are preferred in the procedure of sparse representation, to reduce the representation
errors. Two widely used hyperspectral datasets were utilized to test the performance of the pro-
posed RMC-OOSSC algorithm, obtaining high clustering accuracies (overall accuracy) of
71.98% and 89.57%, respectively. The experimental results show that the proposed method
clearly improves the clustering performance with respect to the other state-of-the-art clustering
methods, and it significantly reduces the computational time. © 2016 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.10.046014]
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1 Introduction

Hyperspectral imaging can obtain the continuous spectra of land-cover materials with a nano-
meter precision, which represents a function of the wavelength with a large spectral range and a
high spectral resolution.1–3 Every pixel in a hyperspectral image (HSI) is represented by hun-
dreds of values, and each value corresponds to a different narrow wavelength.4 In this way, HSIs
provide richer spectral information than multispectral imagery, to support the fine recognition
of various land-cover materials, and they have opened up new remote sensing application fields,
such as geology,5 ecological environment monitoring,6,7 urban planning,8 and precision
agriculture.9 Among these applications, a commonly used fundamental technique is clustering.
The clustering label can be decided by a similarity measure, which means that pixels with the
same label are similar and those with different labels are dissimilar. However, due to the large
spectral variations and spatial complexities, it is usually a very challenging task to cluster HSIs.

The pixel-based clustering methods have experienced a long period of development. Typical
examples include the classical centroid clustering methods, such as k-means 10 and fuzzy
c-means (FCM),11,12 density-based methods, such as the clustering by fast search and find of
density peaks algorithm (CFSFDP),13 the more complex biological methods, such as unsuper-
vised remote sensing image classification using an artificial immune network,14 and the graph-
based methods, such as spectral local best-fit flats.15,16 In recent years, some improved variations
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of the traditional clustering models have been proposed, such as the unsupervised classification
of hyperspectral imaging data using projection pursuit and the Markov random field segmenta-
tion model.17 However, due to the uniform distribution of the feature space of HSIs, these
methods still cannot achieve satisfactory segmentation accuracies.

More recently, the sparse subspace clustering (SSC) algorithm has been proposed18,19 and has
been successfully applied to cluster HSIs, showing great potential.20,21 By taking full advantage
of the high spectral correlation and the spatial neighborhood information, the spectral–spatial
sparse subspace clustering (S4C) algorithm has significantly improved the performance of
SSC.20,22 However, as in most pixel-level clustering methods, the S4C method faces some lim-
itations: (1) it produces a characteristic and inconsistent salt-and-pepper clustering map; (2) it is
not capable of making full use of the different neighborhood relationships; and (3) it often results
in high computational complexity.

To overcome these shortcomings, in recent years, researchers have paid attention to the
object-oriented clustering methods, which simultaneously utilize the spectral and spatial infor-
mation to fully exploit the inherent attributes and structure of HSIs to obtain a better clustering
performance.23–25 For example, some researchers have used k-means or FCM to cluster objects
obtained by segmentation to improve the precision to a certain degree.26–32 In addition, the
object-oriented semantic clustering algorithm for HSIs using the probabilistic latent semantic
analysis model coupled with neighborhood spatial information was proposed and found to out-
perform the classical pixel-based clustering algorithms.33 All these methods have shown that the
object-oriented methods are superior to the pixel-based methods from the following aspects.34–36

First, with the help of image objects, spatial semantic information is incorporated into the clus-
tering scheme, which can effectively relieve the influence of salt-and-pepper noise and fully
utilize the spatial information of the HSI. Second, the computational complexity is significantly
reduced because of the direct operation on objects rather than pixels, which opens up great
potential for real remote sensing applications.

In view of this, this paper proposes a reweighted mass center based object-oriented sparse
subspace clustering (RMC-OOSSC) algorithm for HSIs to fully exploit the potential of the SSC
model and overcome the defects of the pixel-based methods. The basic ideas and contributions of
this paper can be summarized as follows. First, the effective and robust mean-shift method is
adopted to oversegment the HSI to obtain meaningful image objects,25,37 acquiring homo-
geneous areas and accurate boundary information by considering both the spectral and spatial
information of the HSI. In the clustering process, each object is treated as a particular pixel, as in
the pixel-based clustering scheme. In this way, the computational complexity is significantly
reduced. Second, a distance reweighted mass center learning model is presented to extract
the representative and discriminative features for each object, which incorporates the spatial
neighborhood information to reduce the influence of salt-and-pepper noise and simultaneously
exploit the spectral–spatial structure of the HSI. Third, the extracted objects are assigned into
different clusters with the weighted SSC model, which can effectively relieve the spectral noise
problem.

However, the proposed algorithm still has room for improvement. For instance, more mean-
ingful features of the segmentation objects could be utilized in the clustering procedure, which
may provide more discriminative capability. In addition, the number of objects has a large in-
fluence on the final clustering performance, and the RMC-OOSSC algorithm cannot adaptively
determine this. All these issues will be addressed in our future work.

The rest of this paper is organized as follows. Section 2 reviews the classical SSC model.
Section 3 introduces the proposed RMC-OOSSC algorithm for HSIs. In Sec. 4, the experimental
results of the proposed RMC-OOSSC algorithm are presented for two widely used HSI datasets.
Section 5 draws the conclusions and summarizes our future work.

2 Classical Sparse Subspace Clustering Model

2.1 Sparse Representation

In the sparse representation model, a target signal can be approximated by a linear or an affine
combination of a few elements from an overcomplete dictionary, which can usually be
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represented in the form of A ∈ RD×K with D < K. The signal t ∈ RD can then be approximately
represented by multiplying the dictionary A with a coefficient vector α ∈ RK. As only a few
entries in α are nonzero, it is called a sparse vector, which can be obtained by solving the fol-
lowing optimization problem:

EQ-TARGET;temp:intralink-;e001;116;687α ¼ arg min kαk0 s:t: t ¼ Aαþ ζ; (1)

where ζ ∈ RD is the representation error vector. Because the l0-norm, which counts the number
of nonzero elements of α, is usually an nondeterministic polynomial (NP)-hard combinatorial
problem, one of the following two strategies is usually adopted: a greedy pursuit-based algorithm
or an l1-norm convex relaxation algorithm.18

2.2 Sparse Subspace Clustering Model for Hyperspectral Images

The classical SSC model utilizes the self-expressiveness property of the data.18,19 That is to say,
each sample is regarded as lying in a union of subspaces, which the dataset belongs to, with each
subspace corresponding to a class or a cluster.38 In this way, each target signal can be approx-
imately represented by other samples from the same subspace, which corresponds to the sparsest
representation solution. The sparse representation coefficients are then utilized to segment these
samples into different clusters corresponding to separate subspaces.

For an HSI dataset, although pixels of the same land-cover type may have varying reflection
and absorption features because of the different imaging conditions, they will lie in the same
subspace. That is to say, each pixel lies in an exact subspace of the union of the linear or affine
subspaces fCigli¼1, where l represents the number of subspaces. Therefore, the SSC scheme for
HSIs is reasonable. Specifically, the 3-D HSI cube can be represented as a 2-D matrix
Y ¼ ½Y1;Y2; · · · ;YMN �, Y ∈ RD×MN , with each column representing a high-dimensional vector
corresponding to a certain hyperspectral pixel, whereD refers to the dimension of each vector,M
represents the width of the HSI data, and N stands for the height of the data. Considering the
similar energy of hyperspectral pixels, it is more practical to adopt the affine subspace to model
HSIs because it applies a constraint to the points lying in the union of the subspaces. Then, with
the HSI dataset itself being the dictionary, the SSC scheme models the sparse representation
procedure as follows:

EQ-TARGET;temp:intralink-;e002;116;360minCkCk0 þ
λ

2
kNk2F s. t. Y ¼ YCþ N; diagðCÞ ¼ 0; CT1 ¼ 1; (2)

where C ∈ RMN×MN is the coefficient matrix, N ∈ RD×MN is the representation error matrix, and
parameter λ is the tradeoff between the sparsity of the coefficient and the magnitude of the noise.
The constraint diagðCÞ ¼ 0 is used to eliminate the trivial solution of writing a point as an affine
combination of itself.18,39–42 In addition, the constraint CT1 ¼ 1 means that the affine subspace
model is adopted, where 1 ∈ RMN is a vector whose elements are all ones. Although l0-norm
minimization is the most direct application of sparse theory, it is usually an NP-hard problem in
practice. Therefore, tightest convex surrogate l1-norm minimization is usually adopted, which
faithfully seeks the representative atoms from the same subspace of the target hyperspectral
pixel.43–45 The sparse representation model can then be built as follows:

EQ-TARGET;temp:intralink-;e003;116;212minC;NkCk1 þ
λ

2
kNk2F s:t: Y ¼ YCþ N; diagðCÞ ¼ 0; CT1 ¼ 1: (3)

This model can be easily solved by the alternating direction method of multipliers (ADMM). The
sparse coefficient matrix C is then utilized to construct the similarity graph W̃ ∈ RMN×MN in a
symmetrization form, with each element standing for the similarity between pixel i and pixel j,
which is also called the l1-direct weighted graph:

EQ-TARGET;temp:intralink-;e004;116;125W̃ ¼ jCj þ jCjT: (4)

In this way, the connection of the graph can be effectively strengthened to guarantee that the
pixels can be correctly segmented into the corresponding separate subspaces. Finally, spectral
clustering is applied to obtain the clustering result.46–50
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3 Reweighted Mass Center Based Object-Oriented Sparse Subspace
Clustering Model for Hyperspectral Images

Directly applying SSC at the pixel level is usually affected by the following problems: (1) there is
a huge amount of salt-and-pepper noise within classes; (2) different neighborhood relationships
cannot be used; and (3) the computational complexity is huge. Therefore, an object-oriented
strategy is to be preferred. For the proposed RMC-OOSSC algorithm, there are three main
steps: (1) image object segmentation; (2) unsupervised mass center learning based feature extrac-
tion; and (3) the clustering operation.

3.1 Image Segmentation

For the object-oriented image analysis methods, extracting meaningful objects is the first and key
step, and the quality of the extracted objects greatly affects the precision of the clustering
result.51–53 In practice, image segmentation methods are usually adopted to realize the above
purpose and can be regarded as the process of partitioning the image into nonintersecting homo-
geneous regions.24,37

In order to obtain high-quality image objects to guarantee that each image object is pure,
various properties of HSIs should be comprehensively considered in the segmentation scheme,
and the oversegmentation strategy is adopted to eliminate mixed objects in this paper. Second,
the segmentation should be robust to noise and singular points. Third, the segmentation method
should be powerful enough to effectively segment arbitrarily structured feature spaces.
Considering all the above aspects, the mean-shift segmentation method is adopted because
of its robustness and ability to make full use of the spectral and spatial structure information
to obtain accurate and ideal homogeneous objects.37

Mean shift is a nonparametric density-estimation technique, which is based on Parzen win-
dow-based kernel density estimation. With q data points xi (i ¼ 1; : : : ; q) in the D-dimensional
feature space, the kernel density estimator at point x can be defined as follows:25,37

EQ-TARGET;temp:intralink-;e005;116;403f̂h;KðxÞ ¼
ck;D
qhD

Xq
i¼1

k

����� x − xi
h

����
2
�
; (5)

where ck;D is a normalization constant, h is the bandwidth parameter, and k ð·Þ is the kernel
profile, which models how strongly the data points are taken into account for the estimation.25,37

Then, through differentiating Eq. (5) and decomposing to two product terms, as in Eq. (6), the
mean-shift analysis finds the modes of this density, which are located along the gradient
∇fðxÞ ¼ 0 and are the local maxima of the density function fðxÞ:37

EQ-TARGET;temp:intralink-;e006;116;294∇̂fh;KðxÞ ¼
2

h2c
f̂h;GðxÞ · mh;GðxÞ; (6)

where c is the normalization constant, defined as c ¼ cg;D∕ck;D, with cg;D being its normaliza-
tion parameter, and the profile of kernel G is defined as gðxÞ ¼ −k 0ðxÞ.25,37 The first term in
Eq. (6) is the density estimation at x with kernel G, and the second term is the mean-shift vector.
These terms are formulated as follows:

EQ-TARGET;temp:intralink-;e007;116;204f̂h;GðxÞ ¼
cg;D
qhD

Xq
i¼1

g

����� x − xi
h

����
2
�
; (7)

EQ-TARGET;temp:intralink-;e008;116;155mh;GðxÞ ¼
Pq

i¼1 xi · g

����� x−xi
h

����
2
�

Pq
i¼1 g

����� x−xi
h

����
2
� − x: (8)

From Eq. (8), it can be easily found that the mean shift is the difference between the weighted
means, with the kernel g ð·Þ being used as the weights and x is the center of the kernel window. In
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fact, the mean-shift vector always moves toward the direction of maximum increase in the den-
sity. That is to say, the local mean is shifted toward the region in which the majority of the points
reside, until reaching a stationary point called the mode.25,37

In essence, the mean-shift segmentation is a straightforward extension of the discontinuity
preserving smoothing algorithm that can obtain accurate and ideal homogeneous regions, which
are treated as objects, as shown in Fig. 1. With xi and zi, i ¼ 1; · · · ; n representing the D-dimen-
sional input and filtered hyperspectral pixels in the joint spatial–spectral domain, respectively, Li

standing for the label of the i’th pixel,H denoting the number of clusters or objects, hs being the
threshold of the spatial domain, and hr representing the threshold of the spectral domain, the
mean-shift method contains the following main steps:

1. Run the mean-shift filtering procedure for the image and store all the information about
the D-dimensional convergence point in zi.

2. Delineate the clusters fCfgf¼1; · · · ;H in the joint domain by grouping together all of zi,
which are closer than hs in the spatial domain and hr in the spectral domain, i.e., con-
catenate the basins of attraction of the corresponding convergence points.

3. Assign a label to each pixel: Li ¼ ffjzi ∈ Cf; i ¼ 1 · · · ;MNg.
4. Optional: Eliminate spatial regions containing less than η pixels, where η denotes the

minimum size of object.

3.2 Unsupervised Mass Learning-Based Feature Extraction

After image segmentation, it is necessary to extract representative and discriminative features for
each object. Indeed, each object can be seen as a convex hull consisting of all the pixels within
the object. An intuitive idea is to extract the center of mass of each convex hull, because the mass
center can represent the common attributes of all the pixels in the convex hull and can relieve the
influence of salt-and-pepper noise, as shown in Fig. 2. Considering that no prior knowledge or
label information is available, an unsupervised mass center learning model is proposed here,
which is named the distance reweighted mass center learning model. This model takes full ad-
vantage of the correlations between each pixel and the corresponding center, which can effec-
tively reduce the sum of squared error between pixels and centers. The distance reweighted mass
center learning model is formulated as follows:

The original image

The segmentation image The segmentation outline 

The segmentation image

Fig. 1 The segmentation process. Through oversegmentation of the original hyperspectral image,
the meaningful objects can be obtained.

Zhai et al.: Reweighted mass center based object-oriented sparse subspace clustering. . .

Journal of Applied Remote Sensing 046014-5 Oct–Dec 2016 • Vol. 10(4)



EQ-TARGET;temp:intralink-;e009;116;522ȳðkþ1Þ
f ¼

Xs

j¼1

yj����ȳðkÞf − yj

����
2

F

; (9)

where ȳðkÞf represents the mass center spectral signal of the f’th object in the k’th iteration, yj
stands for a hyperspectral pixel within the object, and s denotes the number of pixels located
within the f’th object, and is usually called the “size” of the object. Specifically, the mass center
can be learned through an iterative process, with the mean spectrum of each object utilized as the
initial value. The distance between each pixel and the center is then used to calculate the cor-
responding weight to refresh the mass center of the convex hull until the difference between the
new mass center and the old one is smaller than the predefined error tolerance τ. In this way, a
representative feature of high quality can be extracted because it effectively reduces the differ-
ence between each pixel within the convex hull and the mass center. Meanwhile, it fully exploits
the spectral–spatial structure attributes of the HSI and can effectively distinguish different land-
cover materials.

Compared with the spectral feature in the pixel-based clustering methods, the mass center
spectra have the following superiorities: (1) through calculating the center of mass, the influence
of singular points and noise can be reduced to a large degree; (2) the mass center spectra can
better satisfy the affine subspace model because the influence of singular points has been miti-
gated; and (3) it is natural for the mass center spectra to consider neighborhood information in
the extraction procedure so that the spatial information is fully used. That is to say, the mass
center spectra are spectral–spatial features, so that they are more meaningful and discriminative
and can significantly reduce the representation bias in the sparse representation procedure.54

3.3 Object-Oriented Sparse Subspace Clustering with a Weighting Scheme

Considering the high correlations among the mass center spectra, it is necessary to add a con-
straint to help the SSC scheme choose the corresponding atoms with the highest correlation to
represent the signals.22 As with the pixel-based SSC scheme, the data matrix consisting of these
mass center spectra is utilized as the self-representation dictionary. Then, by imposing greater
weights on the highly correlated atoms and smaller weights on the less correlated atoms, the SSC
model with a weighting scheme is constructed to ensure that the atoms with high correlation
occupy the dominant place in the sparse representation process.21 In this way, a more accurate
representation coefficient matrix can be obtained, which directly contributes to improving the
final clustering accuracy.

Specifically, the representation coefficient matrix can be obtained by solving the following
sparse optimization problem:

Fig. 2 The convex hull consists of all the pixels within the object, with the red point denoting its
center of mass.
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EQ-TARGET;temp:intralink-;e010;116;735minC̄;NkWC̄k1 þ
λ

2
kNk2F s. t. Ȳ ¼ Ȳ C̄þN; diagðC̄Þ ¼ 0; C̄T1 ¼ 1; (10)

where Ȳ ∈ RD×H represents the object signals, with each column corresponding to a mass center
spectrum ȳ, H stands for the number of objects obtained by the image segmentation, and C̄ ∈
RH×H denotes the corresponding sparse representation matrix. The weighted matrixW is defined
in the following way:

EQ-TARGET;temp:intralink-;e011;116;655Wi;j ¼
1

kȳi − ȳjk22 þ γ
i; j ¼ 1;2; · · · ; H; i ≠ j; (11)

where ȳi and ȳj represent the i’th mass center spectrum and the j’th mass center spectrum,
respectively. The normalization parameter γ is a very small constant, which can be set as
0.001 in practice, to avoid the weight of two extremely similar adjacent objects being super
large. The diagonal elements of W are all zeros to avoid a trivial solution. The corresponding
weight is then normalized by the following formulation to guarantee that the value will fall into
the range of 0 to 1:

EQ-TARGET;temp:intralink-;e012;116;538Wi;j ¼
Wi;j

Wi;·
i; j ¼ 1;2; : : : ; H; (12)

where Wi;· is the i’th row of the weighted matrix W.
Equation (10) can be efficiently solved with the ADMM in the following way.55–61 Through

introducing an auxiliary matrix A ∈ RH×H with the same size as the sparse coefficient matrix C̄
to the objective function to separate the variables, along with two penalty terms corresponding to
AT1 ¼ 1 and A ¼ C̄ − diagðC̄Þ, Eq. (10) is transformed into the Lagrange function as follows:

EQ-TARGET;temp:intralink-;e013;116;433

LðC̄;A; δ;ΔÞ ¼ kWC̄k1 þ
λ

2
kȲ − ȲAk2F þ ρ

2
kAT1 − 1k22

þ ρ

2
kA − ½C̄ − diagðC̄Þ�k2F þ δTðAT1 − 1Þ þ trfΔT ½A − C̄þ diagðC̄Þ�g; (13)

where trð·Þ denotes the trace operator of a given matrix, which sums up all the elements along the
major diagonal line.

Each target variable can then be alternately updated in the iterative procedure as follows:
(1) update A by Eq. (14), with the other four variables fixed; (2) update C̄ by fixing the
other variables in Eq. (15); (3) update δ and Δ with A and C̄ using Eqs. (16) and (17).
Repeat these steps until convergence is achieved or the number of iterations exceeds the maxi-
mum iteration number. Specifically, convergence is achieved when we have kAðkÞT1 − 1k∞ ≤ ε,
kAðkÞ − C̄ðkÞk∞ ≤ ε, kAðkÞ − Aðk−1Þk∞ ≤ ε, where ε denotes the predefined error tolerance for
the primal and dual residuals:

EQ-TARGET;temp:intralink-;e014;116;261ðλȲTȲþ ρIþ ρ11T þ ρIÞAðkþ1Þ ¼ λȲTȲþ ρC̄ðkÞ þ ρð11T þ C̄ðkÞÞ−1δðkÞT − ΔðkÞ (14)

EQ-TARGET;temp:intralink-;e015;116;226C̄ðkþ1Þ ¼ W½J − diagðJÞ�; J ¼ Γ1
ρ

�
Aðkþ1Þ þ ΔðkÞ

ρ

�
; (15)

EQ-TARGET;temp:intralink-;e016;116;183δðkþ1Þ ¼ δðkÞ þ ρ½Aðkþ1ÞT1 − 1�; (16)

EQ-TARGET;temp:intralink-;e017;116;154Δðkþ1Þ ¼ ΔðkÞ þ ρ½Aðkþ1Þ − C̄ðkþ1Þ�; (17)

where Γ1
ρ
ð·Þ is the shrinkage-thresholding operator: Γ1

ρ
ðυÞ ¼ ðjυj − 1

ρÞþsgnðυÞ, where the operator
ð·Þþ returns its arguments if it is non-negative and returns zero otherwise. The sparse coefficient
matrix is then used to build the similarity graph in the same way as SSC. The cluster labels are
then obtained by applying spectral clustering to it.
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It should be noted that the cluster labels correspond to objects rather than pixels. An inverse
mapping process from objects to pixels is therefore necessary. Based on the mechanism of seg-
mentation, each object corresponds to a homogenous area. That is to say, all the pixels within it
should share the same label as the corresponding object. Therefore, with the help of the spatial
position information, it is easy to label each pixel according to the corresponding object. In this
way, the final clustering result can be obtained.

3.4 Flowchart

The proposed RMC-OOSSC algorithm can be summarized, as shown in Table 1. The flowchart
of the proposed RMC-OOSSC algorithm is given in Fig. 3.

4 Experimental Results and Discussion

4.1 Data and Study Area

Two widely used hyperspectral datasets were utilized to evaluate the performance of the pro-
posed RMC-OOSSC algorithm: the University of Pavia dataset and the Washington, DC, Mall
dataset.

The first experimental dataset was acquired by the Reflective Optics System Imaging
Spectrometer (ROSIS) sensor during a flight campaign over Pavia, Northern Italy. The
image is of a size of 610 × 340 × 103 and its spatial resolution is 1.3 m. A typical area was used
as the test data, with the size of 200 × 100 × 103,22 containing eight main land-cover classes:
metal sheet, asphalt, meadows, trees, bare soil, bitumen, bricks, and shadows. Figure 4 shows the
false-color image, the ground truth, and the spectral curves of the eight land-cover classes.
Generally speaking, this image is difficult to cluster because the spectral signals of some classes
are very similar, such as meadows and bitumen, which can be easily observed in Fig. 4.

The second experimental dataset was acquired by the Hyperspectral Digital Imagery
Collection Experiment (HYDICE) sensor over the Washington, DC, Mall, United States, at
a size of 1208 × 307, with 191 bands used in the experiment. As in the former experiment,

Table 1 RMC-OOSSC algorithm for hyperspectral images.

Input:

(1) A 2-D matrix of the HSI containing a set of points fy igMN
i¼1 in a union of l affine subspaces fCigli¼1;

(2) Parameters, including the cluster number l and regulation parameters λ and ρ.

Main algorithm:

(1) Apply the mean-shift segmentation to obtain meaningful objects;

(2) Calculate the mass center spectra of the objects with Eq. (9);

(3) Calculate the weighted matrix W with Eq. (11) and normalize it with Eq. (12);

(4) Construct the sparse optimization model (10) and solve it to obtain the sparse coefficient matrix C̄ using
ADMM;

(5) Normalize the columns of C̄ as C̄i←
C̄i

kC̄i k∞
;

(6) Construct the similarity graph with Eq. (4);

(7) Apply spectral clustering to the similarity graph to obtain the labels of the image objects;

(8) Label each pixel with the corresponding image object to obtain the final clustering result.

Output:

A 2-D matrix which records the labels of the clustering result of the HSI.
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we used a typical area for the test of 256 × 257, containing six main land-cover classes: water,
grass, trees, square, roof, and road. This dataset has a more complex distribution of land-cover
classes, and the spectral signals of some classes are very similar, such as trees and grass, which
leads to a more challenging task for the clustering. The spectral curves of the six land-cover
classes are shown in Fig. 5, along with the false-color image and the ground truth.
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Fig. 4 ROSIS University of Pavia image: (a) the false-color image (RGB 102, 56, 31), (b) the
ground truth, and (c) the spectral curves of the eight land-cover classes.
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Fig. 5 HYDICE Washington, DC, Mall image: (a) the false-color image (RGB 63, 52, 36), (b) the
ground truth, and (c) the spectral curves of the six land-cover classes.
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4.2 Experimental Settings

The proposed RMC-OOSSC algorithm was compared with several benchmark clustering meth-
ods: k-means,10 FCM,11 FCM with spatial information (FCM_S1),62 the CFSFDP algorithm,13

the SSC algorithm, and the S4C algorithm.22 In addition, a widely used object-oriented method,
OOK-means, was also included in the comparison. As the SSC and S4C algorithms require a lot
of memory and have a large computational burden, the experiments were conducted with the
help of a computer server. To ensure a fair comparison, all the methods were implemented in
MATLAB code under a Linux environment on the server with 32 E5-2630 v3 CPUs at 2.40 GHz
and 110 GB of memory, without any parallelization technology. The time unit was seconds.

The original hyperspectral datasets were directly utilized as the input data for all the cluster-
ing methods, without any preprocessing. The numbers of clusters for the two experiments were
regarded as the prior input parameters, with the other parameters of each clustering method being
manually tuned to the optimum, as listed in Table 2. For CFSFDP, the clustering result was
obtained through manually selecting the corresponding cluster centers in the decision graph
generated by the algorithm. For RMC-OOSSC, in practice, τ was defined as 0.001. To thor-
oughly evaluate the clustering performance of each method, both the visual clustering result
and a quantitative evaluation of the precision [producer’s accuracy, user’s accuracy, overall accu-
racy (OA), kappa coefficient, and z-values] are given for each experiment.

4.3 Experimental Results Obtained with the Reflective Optics System Imaging
Spectrometer University of Pavia Dataset

The clustering maps for the University of Pavia image obtained by k-means, FCM, OOK-means,
FCM_S1, CFSFDP, SSC, S4C, and the proposed RMC-OOSSC algorithm are shown in Fig. 6.
The corresponding quantitative evaluation of the clustering precision is provided in Table 3. In
the table, the optimal value of each row is shown in bold and the second-best result is in italics.

Through comprehensively analyzing the figure and table, it can be seen that k-means and
FCM perform badly in this scene, with significant amounts of misclassifications. For both these
methods, the meadows and bitumen classes are not recognized at all. In addition, some of the
meadows class is misclassified as bare soil. As a result, k-means and FCM obtain very poor
clustering precisions (OA) of 47.99% and 47.54%, respectively. The object-oriented method,
OOK-means, effectively improves the clustering performance of k-means. The reason for
this is that the object-oriented method can fully exploit the different attributes of the HSI
from both the spectral and spatial perspectives, to overcome the defects of the pixel-based meth-
ods, such as salt-and-pepper noise. The spatial neighborhood information is also incorporated
into the analysis with the help of objects, to utilize the spatial similarity of the spectral signals.
For example, the precision of the bitumen class is improved from 58.63% to 59.47%, and the

Table 2 Parameter settings of each method for the two hyperspectral datasets.

Method University of Pavia Washington, DC, Mall

K -means l ¼ 8, l ¼ 6,

FCM l ¼ 8, e ¼ 2, l ¼ 6, e ¼ 2,

FCM_S1 l ¼ 8, e ¼ 2, α ¼ 0.2 l ¼ 6, e ¼ 2, α ¼ 0.2

CFSFDP — —

SSC l ¼ 8, λ ¼ 1.3 × 10−5 l ¼ 6, λ ¼ 5.9 × 10−7

S4C l ¼ 8, λ ¼ 1.3 × 10−5, α ¼ 2.80 × 103 l ¼ 6, λ ¼ 5.9 × 10−7, α ¼ 3.0 × 103

OOK-means l ¼ 8, H ¼ 5234 l ¼ 6, H ¼ 1452

RMC-OOSSC l ¼ 8, λ ¼ 1:1 × 10−5, H ¼ 5234 l ¼ 6, λ ¼ 4.4 × 10−7, H ¼ 1452

Note: l , cluster number; e, fuzzy exponential; λ, tradeoff parameter; H, object number; α, tradeoff parameter
between the spectral term and spatial term.
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precision of the meadows class is improved from 21.09% to 40.49%, which illustrates the supe-
riority of the object-oriented method. It can also be seen that FCM_S1 improves the clustering
accuracy of FCM to a certain degree because it incorporates the spatial information in the clus-
tering scheme. FCM_S1 can obtain a smoother clustering map than FCM and reduce the mis-
classification to some degree to achieve a 4.7% increment in OA. CFSFDP can generate a
smooth clustering result with a high accuracy, but it still cannot get rid of the defects of the
pixel-based methods, with many misclassifications in the clustering map.

We now turn to the three subspace-based methods. SSC obtains a poor performance in this
scene. It can be seen that there is much salt-and-pepper noise in the clustering map and a lot of
misclassifications, so that the OA is only 43.97%. The bricks, asphalt, and bare soil classes have
low precisions at 0%, 0.71%, and 22.04%, respectively. Compared with SSC, S4C significantly
improves the performance to obtain a much better clustering result by simultaneously consid-
ering the high correlation among spectra and the spatial neighborhood information.22 However,
the clustering map is not smooth enough, and there is still some salt-and-pepper noise within
classes, especially for the bare soil class. This is due to the inevitable defects of the pixel-based
methods. Compared with S4C, the proposed RMC-OOSSC can obtain a smoother clustering
result with a higher accuracy. With the help of the object-oriented scheme, the misclassifications
can be further decreased and the salt-and-pepper noise problem can be effectively relieved. For
example, the precision of the meadows and bare soil classes is improved from 87.30% and
31.93% to 92.06% and 71.28%, respectively. This further proves the superiority of the
object-oriented algorithm and the effectiveness of the mass center learning scheme, in which
the different neighborhood relationships can be fully utilized to distinguish different land-
cover types. As a result, improvements in OA of nearly 28% and 7% are achieved, compared

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Metal sheet Meadows Brick Trees Bare soil

Asphalt Bitumen Shadows Unlabeled

Fig. 6 The clustering maps of the different methods for the University of Pavia image: (a) false-
color image (RGB 102, 56, 31), (b), ground truth, (c) k -means, (d) FCM, (e) OOK-means,
(f) FCM_S1, (g) CFSFDP, (h) SSC, (i) S4C, and (j) RMC-OOSSC.
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with SSC and S4C, respectively. Another superiority worth mentioning is that the computational
time is significantly reduced, from 7.3983 × 103 to 155.4496 s, compared with the S4C method.

In order to analyze the significant difference between the clustering methods, we took the
clustering result of SSC as the baseline and calculated the z-values63 of the other clustering
results. For the widely used 5% level of significance, we consider that there is a significant
difference between the two clustering methods if jzj > 3.84 holds. From Table 3, it can be clearly
observed that the proposed RMC-OOSSC algorithm performs significantly better than the other
state-of-the-art methods.

4.4 Experimental Results obtained with the HYDICE Washington, DC, Mall
Dataset

The clustering maps obtained by each clustering method for theWashington, DC, Mall image are
shown in Fig. 7, with the corresponding quantitative evaluation of the clustering precision pro-
vided in Table 4. The best result and the second-best result in each row are shown in bold and
italics, respectively. From the figure and table, it can be clearly seen that OOK-means effectively
improves the performance of k-means by considering the spatial neighborhood information
through the object-oriented scheme. FCM_S1 can also obtain a much better clustering result
through spatial regularization than FCM. The CFSFDP method generates a smooth clustering

Table 3 Quantitative evaluations of the different clustering algorithms for the University of Pavia
image.

Method Class K -means FCM
OOK-
means FCM_S1CFSFDP SSC S4C

RMC-
OOSSC

Producer’s
accuracy (100%)

Metal
sheet

100 82.59 97.67 99.72 100 85.58 99.09 98.95

Meadows 21.09 25.36 40.49 60.32 74.60 52.60 87.30 92.06

Bricks 0 0 3.19 0 0 0 60.64 48.26

Trees 66.67 99.88 0 87.24 100 100 98.61 99.72

Bare soil 35.05 27.86 31.14 24.89 20.59 22.04 31.93 71.28

Asphalt 0 0 0 0 0 0.71 0 3.29

Bitumen 58.63 76.19 59.47 60.99 60.61 53.84 98.37 99.24

Shadows 100 57.62 100 100 99.87 98.61 99.09 97.53

User’s accuracy
(100%)

Metal
sheet

65.80 99.91 64.47 98.90 63.28 48.46 52.41 75.91

Meadows 12.27 55.95 17.80 100 73.44 42.84 57.29 73.42

Bricks 0 0 0.74 0 0 0 22.44 99.20

Trees 91.30 59.65 0 41.93 100 65.13 80.73 75.00

Bare soil 56.42 39.27 60.75 96.52 99.26 64.75 96.12 37.22

Asphalt 0 0 0 0 0 0.21 0 1.28

Bitumen 100 69.57 100 99.88 99.62 99.86 71.57 99.69

Shadows 97.57 20.72 99.45 63.00 28.23 58.65 99.77 79.85

OA (100%) 47.99 47.54 48.01 52.24 52.12 43.97 65.09 71.98

Kappa 0.3629 0.3737 0.3736 0.4481 0.4421 0.3495 0.5852 0.6605

z-value 9.21 7.41 10.81 21.96 20.80 0 36.60 42.37

Time (s) 5.1956 84.4090 0.2481 917.4531280.87061.2934E47.3983E3 155.4496
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result, but there are still many misclassifications within each cluster. SSC obtains poor clustering
results containing a lot of salt-and-pepper noise and misclassifications in this scene. As a result,
the clustering accuracy (OA) is only 81.62%. By simultaneously considering the high correlation
among spectra and incorporating the spatial information, S4C effectively improves the perfor-
mance of SSC to obtain a much smoother clustering map with a higher accuracy. However, there

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Water Grass Trees Square Roof Road Unlabeled

Fig. 7 The clustering maps of the different methods for the Washington, DC, Mall image: (a) false-
color image (RGB 63, 52, 36), (b), ground truth, (c) k -means, (d) FCM, (e) OOK-means,
(f) FCM_S1, (g) CFSFDP, (h) SSC, (i) S4C, and (j) RMC-OOSSC.

Table 4 Quantitative evaluations of the different clustering algorithms for the Washington, DC,
Mall image.

Method Class K -means FCM
OOK-
means FCM_S1 CFSFDP SSC S4C

RMC-
OOSSC

Producer’s
accuracy (100%)

Water 100 100 100 100 99.69 69.29 98.39 100

Grass 98.71 96.91 98.72 97.30 95.63 94.95 97.45 99.70

Tree 87.12 88.13 91.53 89.03 97.05 88.82 91.85 93.94

Square 26.88 8.38 30.75 80.13 20.49 83.93 90.73 89.90

Roof 87.02 63.58 87.91 79.34 71.61 72.32 76.94 76.56

Road 36.30 19.09 35.54 20.65 97.53 71.82 33.33 60.91

User’s accuracy
(100%)

Water 61.09 65.73 62.18 64.16 97.22 86.75 98.94 65.14

Grass 97.13 98.12 98.72 98.06 98.87 94.18 97.05 98.54

Tree 65.42 93.14 96.82 93.93 91.07 66.59 51.18 98.98

Square 47.26 10.22 53.11 58.85 34.37 77.91 95.44 99.44

Roof 95.05 50.08 66.28 83.92 99.89 56.81 87.30 68.44

Road 92.70 57.54 91.53 58.81 48.04 99.48 76.45 84.62

OA (100%) 80.99 72.63 82.54 83.65 83.83 81.62 85.81 89.57

Kappa 0.7554 0.6485 0.7753 0.7916 0.7953 0.7671 0.8188 0.8673

z-value −2.01 −28.02 2.87 7.24 8.66 0 18.67 29.82

Time (s) 26.6586 361.2703 0.7603 2715.14138.8179E35.8971E41.7645E4 18.8666
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are still some misclassifications and salt-and-pepper noise in the clustering map, especially for
the trees, square, and road classes. This is caused by the inherent obstacles faced by the pixel-
based clustering methods. Compared with S4C, the proposed RMC-OOSSC algorithm shows an
excellent performance with a higher clustering accuracy. The misclassification and noise are
effectively relieved owing to the more powerful discriminative features, i.e., the mass center
spectra extracted by the unsupervised learning scheme. For example, the recognition accuracy
of road is improved from 33.33% to 60.91% in OA, which further proves the superiority of the
object-oriented scheme and the distance reweighted mass center learning scheme. Increments in
OA of nearly 8% and 4% are achieved compared with SSC and S4C, respectively. In addition, it
is worth mentioning that the computational time of RMC-OOSSC is significantly reduced from
1.7645 × 104 to 18.8666 s compared with the S4Cmethod, which is an impressive improvement.

Similarly, we took the clustering result of SSC as the baseline and calculated the z-values of
the other clustering results to reflect the significant difference between the clustering methods.
From Table 4, it can be clearly observed that the proposed RMC-OOSSC algorithm performs
significantly better than the other state-of-the-art methods in this scene.

4.5 Parameter Analysis

As the tradeoff between the sparsity of the coefficient and the magnitude of the noise, the regu-
larization parameter λ plays an important role. Therefore, it is necessary to analyze the impacts of
different values of λ on the performance of the proposed RMC-OOSSC algorithm. In fact,
parameter λ is decided by the following formulation:21

EQ-TARGET;temp:intralink-;e018;116;471λ ¼ β

μ
; (18)

EQ-TARGET;temp:intralink-;e019;116;425μ ¼ min
i

max
j≠i

jyTi yjj; (19)

where β is the adjustment coefficient and μ is a parameter related to the dataset, which can be
explicitly determined.

From Eq. (18), it can be easily concluded that the sensitivity of λ is decided by β in practice,
as μ is fixed for a certain dataset. In order to analyze the sensitivity of β, the change trend of the
OA of RMC-OOSSC with various values of β for both experimental datasets is shown in Fig. 8.
From the figure, generally speaking, it can be easily concluded that the performance of the RMC-
OOSSC algorithm is relatively robust with regard to this parameter, and the optimal value always
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Fig. 8 The analysis of β. The curves show the change trend of the OA of RMC-OOSSC with vari-
ous values of β for the University of Pavia andWashington, DC, Mall images, respectively. (a) Beta
analysis for PaviaU image and (b) beta analysis for DC Mall image.
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falls in a very narrow range of ½1;2� × 103. Meanwhile, μ can be explicitly computed with
Eq. (19). Therefore, λ is adaptive to the datasets and can be easily fine-tuned.

Compared to the pixel-based algorithms, there is a critical parameter, the number of objects,
which controls the clustering accuracy of the proposed RMC-OOSSC algorithm, and its sensi-
tivity should be discussed. As is known to us all, the segmentation degree can have an influence
on the final clustering result. Too many objects means redundancy and a high computational
burden for a clustering scheme based on sparse representation, while too few objects may
cause a challenge for the synergy of the atoms in the sparse representation procedure, which
can reduce the clustering accuracy.

As Fig. 9 illustrates, the clustering accuracy of RMC-OOSSC changes with respect to the
number of objects over a relatively small range. The accuracy of RMC-OOSSC is always much
higher than the pixel-based SSC, and it outperforms the S4C algorithm for both experimental
datasets. For the University of Pavia image, the accuracy of RMC-OOSSC reaches an optimum
around 5234 objects. For the Washington, DC, Mall image, the accuracy is the highest around
1452 objects. In general, the performance of the proposed RMC-OOSSC algorithm is relatively
robust with respect to the number of objects.

5 Conclusions

In this paper, faced with the problems of the pixel-based clustering methods, we have proposed a
distance RMC-OOSSC algorithm for HSIs. By using the mean-shift method to oversegment the
HSI, the meaningful objects, which are highly homogeneous, are obtained. An unsupervised
distance RMC learning model is then used to extract the representative and discriminative fea-
tures of the objects and to exploit the spectral–spatial structure of the HSI. Considering the high
correlation among the mass center spectra, a weighting scheme is utilized to help the SSC clus-
tering scheme select the corresponding representative atoms to reduce the representation error.
The extensive experimental results clearly show that the proposed RMC-OOSSC algorithm
obtains a superior clustering performance and significantly reduces the computational time
when compared with the pixel-based SSC and S4C algorithms.
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